Semoga bermanfaat ^_^
KATA
PENGANTAR
Segala
puji dan syukur kami panjatkan atas kehadirat ALLAH SWT dan berkat rahmat dan
karunia-Nya pula, makalah yang berjudul “ SIKLUS KREBS DAN TRANSPOR ELEKTRON“ ini dapat
kami selesaikan untuk keperluan pembelajaran disekolah.
Penulisan
karya ilmiah ini tidak lepas dari dukungan berbagai pihak. Oleh karena itu,
penulis mengucapakan terimakasih kepada Ibu Hj. Fitriatullail, Spd, yang telah
membimbing kami.
Kritik
dan saran sangat kami harapkan demi kesempurnaan karya tulis ini, semoga karya
tulis ini dapat bermanfaat bagi kita semua.
Penulis
DISUSUN
OLEH
KELOMPOK
III :
KETUA
KELOMPOK : LALE RIZKA QURATUL ANJANI
ANGGOTA
:
1. BIDAYANI
2. ERWIN
SUTARJA
3. LISNA
HIDAYAH
4. MEILIA
IRYATUN NISA’
DAFTAR
ISI
JUDUL................................................................................................................................. i
KATA PENGANTAR ....................................................................................................... ii DAFTAR
ISI iii
BAB I PENDAHULUAN...................................................................................................
1.1 Latar Belakang.................................................................................................. 1
1.2 Rumusan Masalah ............................................................................................ 1
1.3 Tujuan............................................................................................................... 1
BAB II PEMBAHASAN.....................................................................................................
2.1. Siklus
Krebs..................................................................................................... 2
2.2.Transpor Elektron............................................................................................. 5
BAB III KESIMPULAN.....................................................................................................6
DAFTAR PUSTAKA ........................................................................................................
BAB I
PENDAHULUAN
1.1.Latar
Belakang
Dalam
siklus krebs, oksidasi metabolit-metabolit yang terlibat terjadi dalam
tahapan-tahapan yang spesifik. Masing-masing tahapan itu dikatalisis oleh
sebuah enzim yaang bekerja dengan dibantu oleh koenzim, biasanya NAD+ atau FAD.
Sebenarnya, koenzim itulah yang bekerja sebagai akseptor elektron dan ion
hidrogen yang dilepaskan dari subtrat-subtratspesifik, yang merupakan
metabolit-metabolit siklus krebs. Kenzim juga merupakan mata rantai penghubung
antara siklus krebs dengan rantai transpor elektron. Kerja siklus krebs
sebenarnya adalah mengoksidasi sempurna asam-asam piruvat yang terus menerus
memasuki siklus itu. Akan tetapi saat karbon-karbon individual dari molekul
yang memasuki siklus dioksidasi ke tingkat energi yang lebih rendah, elektron
dan hidrogen yang melekat ke koenzim tereduksi (NADH dan FADH2) masih berada
pada kondisi berenergi tinggi. Energi tersebut dilepaskan melalui intervensi
rantai transpor elektron, yaitu serangkaian pigmen yang bekerja secara estafet
membawa elektron dan ion hidrogen ke tingkat-yingkat energi yang lebih rendah.
Rantai transpor elektron dimulai dari NADH. Jika rantai tersebut selesai secara
sempurna, maka akan dihasilkan tiga molekul ATP.
Jika rantai baru dimasuki pada tahap-tahap belakangan, seperti pada FADH2, hanya dua molekul ATP yang dihasilkan dari energi yang dilepaskan pada jalur yang menuruni bukit. Karena ATP dihasilkan melalui pengeluaran elektron berulang-ulang dari pigmen-pigmen rantai transpor elektron, proses keseluruhannya disebut sebagai fosforilasi oksidatif. Komponen-komponen rantai transpor elektron tertanam dalam krista dari membran dalam mitokondria, dekat dengan enzim-enzim siklus krebs. Semua itu tersusun sedemikian rupa sehingga menghasilkan efisiensi maksimum untuk transpor elektron.
Jika rantai baru dimasuki pada tahap-tahap belakangan, seperti pada FADH2, hanya dua molekul ATP yang dihasilkan dari energi yang dilepaskan pada jalur yang menuruni bukit. Karena ATP dihasilkan melalui pengeluaran elektron berulang-ulang dari pigmen-pigmen rantai transpor elektron, proses keseluruhannya disebut sebagai fosforilasi oksidatif. Komponen-komponen rantai transpor elektron tertanam dalam krista dari membran dalam mitokondria, dekat dengan enzim-enzim siklus krebs. Semua itu tersusun sedemikian rupa sehingga menghasilkan efisiensi maksimum untuk transpor elektron.
1.2.Rumusan
Masalah
Bagaimana cara kerja siklus krebs dan
transport electron ?
1.3.Tujuan
Untuk mengetahui cara kerja siklus krebs
dan transport electron pada tubuh manusia.
BAB
II
PEMBAHASAN
2.1. Siklus Krebs
Molekul-molekul
piruvat yang dihasilkan selama glikolisis mengandung banyak energi dalam ikatan
antara molekul mereka. Untuk menggunakan energi itu, sel harus dikonversi ke
dalam bentuk ATP. Untuk melakukannya, molekul piruvat diproses melalui Siklus
Kreb, juga dikenal sebagai siklus asam sitrat.
1. Sebelum memasuki Siklus Krebs, piruvat harus dikonversi menjadi asetil KoA (diucapkan: A asetil koenzim). Hal ini dicapai dengan menghilangkan molekul CO2 dari piruvat dan kemudian mengeluarkan elektron untuk memperkecil NAD menjadi NADH. Suatu enzim disebut koenzim A dikombinasikan dengan asetil tersisa untuk membuat asetil CoA yang kemudian dimasukkan ke dalam Siklus Krebs. Langkah-langkah dalam Siklus Krebs adalah sebagai berikut:
2. Sitrat terbentuk ketika grup asetil dari asetil KoA bergabung dengan oksaloasetat dari siklus Krebs sebelumnya ..
3. Sitrat dikonversi menjadi isocitrate isomer nya ..
4. Isocitrate teroksidasi untuk membentuk 5-karbon α-ketoglutarate. Langkah ini melepaskan satu molekul CO2 dan mengurangi NAD untuk NADH2.
5. The α-ketoglutarate teroksidasi untuk suksinil CoA, menghasilkan CO2 dan NADH2.
6. Suksinil CoA rilis koenzim A dan phosphorylates ADP menjadi ATP.
7. Suksinat teroksidasi untuk fumarat, mengubah FAD untuk FADH2.
8. Fumarat adalah hidrolisis untuk membentuk malat.
9. Malat teroksidasi untuk oksaloasetat, mengurangi NAD untuk NADH2.
Kita sekarang kembali pada awal Siklus Krebs. Karena glikolisis menghasilkan dua molekul piruvat dari satu glukosa, glukosa setiap proses melalui siklus kreb dua kali. Untuk setiap molekul glukosa, enam NADH2, dua FADH2, dan dua ATP.
Rantai Transportasi Elektron
Apa yang terjadi pada NADH2 dan FADH2 dihasilkan selama siklus Krebs? Molekul-molekul telah mengalami penurunan, menerima elektron energi tinggi dari molekul asam piruvat yang dibongkar dalam Siklus Krebs. Oleh karena itu, mereka mewakili energi yang tersedia untuk melakukan pekerjaan. Molekul-molekul pembawa transportasi elektron energi tinggi dan proton yang menyertainya hidrogen dari Siklus Krebs ke rantai transpor elektron dalam membran mitokondria bagian dalam.
Di sejumlah langkah memanfaatkan enzim pada membran, NADH2 teroksidasi ke NAD, dan FADH2 ke FAD. Elektron energi tinggi yang ditransfer ke ubiquinone (Q) dan molekul sitokrom c, pembawa elektron di dalam membran. Elektron ini kemudian ditularkan dari molekul ke molekul dalam membran bagian dalam mitochondron itu, kehilangan sebagian energi mereka di setiap langkah. Transfer terakhir melibatkan menggabungkan elektron dan atom H2 dengan oksigen untuk membentuk air. Molekul yang mengambil bagian dalam transportasi elektron ini disebut sebagai rantai transpor elektron.
Proses dapat diringkas sebagai berikut: elektron yang dikirimkan ke sistem transpor elektron memberikan energi untuk "pompa" proton hidrogen melewati membran mitokondria bagian dalam ke ruang luar. Ini konsentrasi tinggi proton hidrogen menghasilkan potensi energi bebas yang dapat melakukan kerja. Artinya, proton hidrogen cenderung bergerak ke bawah gradien konsentrasi dari kompartemen luar ke dalam kompartemen.
Namun, satu-satunya jalan bahwa proton telah adalah melalui kompleks enzim dalam membran dalam. Proton karena melewati saluran dilapisi dengan enzim. Energi bebas dari proton hidrogen digunakan untuk membentuk ATP oleh fosforilasi, fosfat ikatan ke ADP dalam reaksi enzimatis-dimediasi. Karena gradien elektrokimia osmotik pasokan energi, seluruh proses disebut fosforilasi sebagai kemiosmotik.
Setelah elektron (berasal dari Siklus Krebs) telah menghasilkan energi mereka, mereka bergabung dengan oksigen untuk membentuk air. Jika suplai oksigen terputus, elektron dan proton hidrogen berhenti mengalir melalui sistem transpor elektron. Jika ini terjadi, konsentrasi gradien proton tidak akan cukup untuk kekuatan sintesis ATP. Ini sebabnya kami, dan spesies lainnya, tidak dapat bertahan lama tanpa oksigen Siklus Krebs
Molekul-molekul piruvat yang dihasilkan selama glikolisis mengandung banyak energi dalam ikatan antara molekul mereka. Untuk menggunakan energi itu, sel harus dikonversi ke dalam bentuk ATP. Untuk melakukannya, molekul piruvat diproses melalui Siklus Kreb, juga dikenal sebagai siklus asam sitrat.
1. Sebelum memasuki Siklus Krebs, piruvat harus dikonversi menjadi asetil KoA (diucapkan: A asetil koenzim). Hal ini dicapai dengan menghilangkan molekul CO2 dari piruvat dan kemudian mengeluarkan elektron untuk memperkecil NAD menjadi NADH. Suatu enzim disebut koenzim A dikombinasikan dengan asetil tersisa untuk membuat asetil CoA yang kemudian dimasukkan ke dalam Siklus Krebs. Langkah-langkah dalam Siklus Krebs adalah sebagai berikut:
2. Sitrat terbentuk ketika grup asetil dari asetil KoA bergabung dengan oksaloasetat dari siklus Krebs sebelumnya ..
3. Sitrat dikonversi menjadi isocitrate isomer nya ..
4. Isocitrate teroksidasi untuk membentuk 5-karbon α-ketoglutarate. Langkah ini melepaskan satu molekul CO2 dan mengurangi NAD untuk NADH2.
5. The α-ketoglutarate teroksidasi untuk suksinil CoA, menghasilkan CO2 dan NADH2.
6. Suksinil CoA rilis koenzim A dan phosphorylates ADP menjadi ATP.
7. Suksinat teroksidasi untuk fumarat, mengubah FAD untuk FADH2.
8. Fumarat adalah hidrolisis untuk membentuk malat.
9. Malat teroksidasi untuk oksaloasetat, mengurangi NAD untuk NADH2.
Kita sekarang kembali pada awal Siklus Krebs. Karena glikolisis menghasilkan dua molekul piruvat dari satu glukosa, glukosa setiap proses melalui siklus kreb dua kali. Untuk setiap molekul glukosa, enam NADH2, dua FADH2, dan dua ATP.
Rantai Transportasi Elektron
Apa yang terjadi pada NADH2 dan FADH2 dihasilkan selama siklus Krebs? Molekul-molekul telah mengalami penurunan, menerima elektron energi tinggi dari molekul asam piruvat yang dibongkar dalam Siklus Krebs. Oleh karena itu, mereka mewakili energi yang tersedia untuk melakukan pekerjaan. Molekul-molekul pembawa transportasi elektron energi tinggi dan proton yang menyertainya hidrogen dari Siklus Krebs ke rantai transpor elektron dalam membran mitokondria bagian dalam.
Di sejumlah langkah memanfaatkan enzim pada membran, NADH2 teroksidasi ke NAD, dan FADH2 ke FAD. Elektron energi tinggi yang ditransfer ke ubiquinone (Q) dan molekul sitokrom c, pembawa elektron di dalam membran. Elektron ini kemudian ditularkan dari molekul ke molekul dalam membran bagian dalam mitochondron itu, kehilangan sebagian energi mereka di setiap langkah. Transfer terakhir melibatkan menggabungkan elektron dan atom H2 dengan oksigen untuk membentuk air. Molekul yang mengambil bagian dalam transportasi elektron ini disebut sebagai rantai transpor elektron.
Proses dapat diringkas sebagai berikut: elektron yang dikirimkan ke sistem transpor elektron memberikan energi untuk "pompa" proton hidrogen melewati membran mitokondria bagian dalam ke ruang luar. Ini konsentrasi tinggi proton hidrogen menghasilkan potensi energi bebas yang dapat melakukan kerja. Artinya, proton hidrogen cenderung bergerak ke bawah gradien konsentrasi dari kompartemen luar ke dalam kompartemen.
Namun, satu-satunya jalan bahwa proton telah adalah melalui kompleks enzim dalam membran dalam. Proton karena melewati saluran dilapisi dengan enzim. Energi bebas dari proton hidrogen digunakan untuk membentuk ATP oleh fosforilasi, fosfat ikatan ke ADP dalam reaksi enzimatis-dimediasi. Karena gradien elektrokimia osmotik pasokan energi, seluruh proses disebut fosforilasi sebagai kemiosmotik.
Setelah elektron (berasal dari Siklus Krebs) telah menghasilkan energi mereka, mereka bergabung dengan oksigen untuk membentuk air. Jika suplai oksigen terputus, elektron dan proton hidrogen berhenti mengalir melalui sistem transpor elektron. Jika ini terjadi, konsentrasi gradien proton tidak akan cukup untuk kekuatan sintesis ATP. Ini sebabnya kami, dan spesies lainnya, tidak dapat bertahan lama tanpa oksigen
1. Sebelum memasuki Siklus Krebs, piruvat harus dikonversi menjadi asetil KoA (diucapkan: A asetil koenzim). Hal ini dicapai dengan menghilangkan molekul CO2 dari piruvat dan kemudian mengeluarkan elektron untuk memperkecil NAD menjadi NADH. Suatu enzim disebut koenzim A dikombinasikan dengan asetil tersisa untuk membuat asetil CoA yang kemudian dimasukkan ke dalam Siklus Krebs. Langkah-langkah dalam Siklus Krebs adalah sebagai berikut:
2. Sitrat terbentuk ketika grup asetil dari asetil KoA bergabung dengan oksaloasetat dari siklus Krebs sebelumnya ..
3. Sitrat dikonversi menjadi isocitrate isomer nya ..
4. Isocitrate teroksidasi untuk membentuk 5-karbon α-ketoglutarate. Langkah ini melepaskan satu molekul CO2 dan mengurangi NAD untuk NADH2.
5. The α-ketoglutarate teroksidasi untuk suksinil CoA, menghasilkan CO2 dan NADH2.
6. Suksinil CoA rilis koenzim A dan phosphorylates ADP menjadi ATP.
7. Suksinat teroksidasi untuk fumarat, mengubah FAD untuk FADH2.
8. Fumarat adalah hidrolisis untuk membentuk malat.
9. Malat teroksidasi untuk oksaloasetat, mengurangi NAD untuk NADH2.
Kita sekarang kembali pada awal Siklus Krebs. Karena glikolisis menghasilkan dua molekul piruvat dari satu glukosa, glukosa setiap proses melalui siklus kreb dua kali. Untuk setiap molekul glukosa, enam NADH2, dua FADH2, dan dua ATP.
Rantai Transportasi Elektron
Apa yang terjadi pada NADH2 dan FADH2 dihasilkan selama siklus Krebs? Molekul-molekul telah mengalami penurunan, menerima elektron energi tinggi dari molekul asam piruvat yang dibongkar dalam Siklus Krebs. Oleh karena itu, mereka mewakili energi yang tersedia untuk melakukan pekerjaan. Molekul-molekul pembawa transportasi elektron energi tinggi dan proton yang menyertainya hidrogen dari Siklus Krebs ke rantai transpor elektron dalam membran mitokondria bagian dalam.
Di sejumlah langkah memanfaatkan enzim pada membran, NADH2 teroksidasi ke NAD, dan FADH2 ke FAD. Elektron energi tinggi yang ditransfer ke ubiquinone (Q) dan molekul sitokrom c, pembawa elektron di dalam membran. Elektron ini kemudian ditularkan dari molekul ke molekul dalam membran bagian dalam mitochondron itu, kehilangan sebagian energi mereka di setiap langkah. Transfer terakhir melibatkan menggabungkan elektron dan atom H2 dengan oksigen untuk membentuk air. Molekul yang mengambil bagian dalam transportasi elektron ini disebut sebagai rantai transpor elektron.
Proses dapat diringkas sebagai berikut: elektron yang dikirimkan ke sistem transpor elektron memberikan energi untuk "pompa" proton hidrogen melewati membran mitokondria bagian dalam ke ruang luar. Ini konsentrasi tinggi proton hidrogen menghasilkan potensi energi bebas yang dapat melakukan kerja. Artinya, proton hidrogen cenderung bergerak ke bawah gradien konsentrasi dari kompartemen luar ke dalam kompartemen.
Namun, satu-satunya jalan bahwa proton telah adalah melalui kompleks enzim dalam membran dalam. Proton karena melewati saluran dilapisi dengan enzim. Energi bebas dari proton hidrogen digunakan untuk membentuk ATP oleh fosforilasi, fosfat ikatan ke ADP dalam reaksi enzimatis-dimediasi. Karena gradien elektrokimia osmotik pasokan energi, seluruh proses disebut fosforilasi sebagai kemiosmotik.
Setelah elektron (berasal dari Siklus Krebs) telah menghasilkan energi mereka, mereka bergabung dengan oksigen untuk membentuk air. Jika suplai oksigen terputus, elektron dan proton hidrogen berhenti mengalir melalui sistem transpor elektron. Jika ini terjadi, konsentrasi gradien proton tidak akan cukup untuk kekuatan sintesis ATP. Ini sebabnya kami, dan spesies lainnya, tidak dapat bertahan lama tanpa oksigen Siklus Krebs
Molekul-molekul piruvat yang dihasilkan selama glikolisis mengandung banyak energi dalam ikatan antara molekul mereka. Untuk menggunakan energi itu, sel harus dikonversi ke dalam bentuk ATP. Untuk melakukannya, molekul piruvat diproses melalui Siklus Kreb, juga dikenal sebagai siklus asam sitrat.
1. Sebelum memasuki Siklus Krebs, piruvat harus dikonversi menjadi asetil KoA (diucapkan: A asetil koenzim). Hal ini dicapai dengan menghilangkan molekul CO2 dari piruvat dan kemudian mengeluarkan elektron untuk memperkecil NAD menjadi NADH. Suatu enzim disebut koenzim A dikombinasikan dengan asetil tersisa untuk membuat asetil CoA yang kemudian dimasukkan ke dalam Siklus Krebs. Langkah-langkah dalam Siklus Krebs adalah sebagai berikut:
2. Sitrat terbentuk ketika grup asetil dari asetil KoA bergabung dengan oksaloasetat dari siklus Krebs sebelumnya ..
3. Sitrat dikonversi menjadi isocitrate isomer nya ..
4. Isocitrate teroksidasi untuk membentuk 5-karbon α-ketoglutarate. Langkah ini melepaskan satu molekul CO2 dan mengurangi NAD untuk NADH2.
5. The α-ketoglutarate teroksidasi untuk suksinil CoA, menghasilkan CO2 dan NADH2.
6. Suksinil CoA rilis koenzim A dan phosphorylates ADP menjadi ATP.
7. Suksinat teroksidasi untuk fumarat, mengubah FAD untuk FADH2.
8. Fumarat adalah hidrolisis untuk membentuk malat.
9. Malat teroksidasi untuk oksaloasetat, mengurangi NAD untuk NADH2.
Kita sekarang kembali pada awal Siklus Krebs. Karena glikolisis menghasilkan dua molekul piruvat dari satu glukosa, glukosa setiap proses melalui siklus kreb dua kali. Untuk setiap molekul glukosa, enam NADH2, dua FADH2, dan dua ATP.
Rantai Transportasi Elektron
Apa yang terjadi pada NADH2 dan FADH2 dihasilkan selama siklus Krebs? Molekul-molekul telah mengalami penurunan, menerima elektron energi tinggi dari molekul asam piruvat yang dibongkar dalam Siklus Krebs. Oleh karena itu, mereka mewakili energi yang tersedia untuk melakukan pekerjaan. Molekul-molekul pembawa transportasi elektron energi tinggi dan proton yang menyertainya hidrogen dari Siklus Krebs ke rantai transpor elektron dalam membran mitokondria bagian dalam.
Di sejumlah langkah memanfaatkan enzim pada membran, NADH2 teroksidasi ke NAD, dan FADH2 ke FAD. Elektron energi tinggi yang ditransfer ke ubiquinone (Q) dan molekul sitokrom c, pembawa elektron di dalam membran. Elektron ini kemudian ditularkan dari molekul ke molekul dalam membran bagian dalam mitochondron itu, kehilangan sebagian energi mereka di setiap langkah. Transfer terakhir melibatkan menggabungkan elektron dan atom H2 dengan oksigen untuk membentuk air. Molekul yang mengambil bagian dalam transportasi elektron ini disebut sebagai rantai transpor elektron.
Proses dapat diringkas sebagai berikut: elektron yang dikirimkan ke sistem transpor elektron memberikan energi untuk "pompa" proton hidrogen melewati membran mitokondria bagian dalam ke ruang luar. Ini konsentrasi tinggi proton hidrogen menghasilkan potensi energi bebas yang dapat melakukan kerja. Artinya, proton hidrogen cenderung bergerak ke bawah gradien konsentrasi dari kompartemen luar ke dalam kompartemen.
Namun, satu-satunya jalan bahwa proton telah adalah melalui kompleks enzim dalam membran dalam. Proton karena melewati saluran dilapisi dengan enzim. Energi bebas dari proton hidrogen digunakan untuk membentuk ATP oleh fosforilasi, fosfat ikatan ke ADP dalam reaksi enzimatis-dimediasi. Karena gradien elektrokimia osmotik pasokan energi, seluruh proses disebut fosforilasi sebagai kemiosmotik.
Setelah elektron (berasal dari Siklus Krebs) telah menghasilkan energi mereka, mereka bergabung dengan oksigen untuk membentuk air. Jika suplai oksigen terputus, elektron dan proton hidrogen berhenti mengalir melalui sistem transpor elektron. Jika ini terjadi, konsentrasi gradien proton tidak akan cukup untuk kekuatan sintesis ATP. Ini sebabnya kami, dan spesies lainnya, tidak dapat bertahan lama tanpa oksigen
2.2. Transpor Elektron
Rantai transpor elektron adalah tahapan
terakhir dari reaksi respirasi aerob. Transpor elektron sering disebut juga
sistem rantai respirasi atau sistem oksidasi terminal. Transpor elektron
berlangsung pada krista (membran dalam) dalam mitokondria. Molekul yang
berperan penting dalam reaksi ini adalah NADH dan FADH2, yang
dihasilkan pada reaksi glikolisis, dekarboksilasi oksidatif, dan siklus Krebs.
Selain itu, molekul lain yang juga berperan adalah molekul oksigen, koenzim Q
(Ubiquinone), sitokrom b, sitokrom c, dan sitokrom a.
Sistem Transpor Elektron
Pertama-tama, NADH dan FADH2 mengalami oksidasi, dan elektron berenergi tinggi yang berasal dari reaksi oksidasi ini ditransfer ke koenzim Q. Energi yang dihasilkan ketika NADH dan FADH2 melepaskan elektronnya cukup besar untuk menyatukan ADP dan fosfat anorganik menjadi ATP. Kemudian koenzim Q dioksidasi oleh sitokrom b. Selain melepaskan elektron, koenzim Q juga melepaskan 2 ion H+.
Setelah itu sitokrom b dioksidasi oleh sitokrom c. Energi yang dihasilkan dari proses oksidasi sitokrom b oleh sitokrom c juga menghasilkan cukup energi untuk menyatukan ADP dan fosfat anorganik menjadi ATP. Kemudian sitokrom c mereduksi sitokrom a, dan ini merupakan akhir dari rantai transpor elektron. Sitokrom a ini kemudian akan dioksidasi oleh sebuah atom oksigen, yang merupakan zat yang paling elektro negatif dalam rantai tersebut, dan merupakan akseptor terakhir elektron. Setelah menerima elektron dari sitokrom a, oksigen ini kemudian bergabung dengan ion H+ yang dihasilkan dari oksidasi koenzim Q oleh sitokrom b membentuk air (H2O). Oksidasi yang terakhir ini lagi-lagi menghasilkan energi yang cukup besar untuk dapat menyatukan ADP dan gugus fosfat organik menjadi ATP. Jadi, secara keseluruhan ada tiga tempat pada transpor elektron yang menghasilkan ATP.
Sejak reaksi glikolisis sampai siklus Krebs, telah dihasilkan NADH dan FADH2 sebanyak 10 dan 2 molekul. Dalam transpor elektron ini, kesepuluh molekul NADH dan kedua molekul FADH2 tersebut mengalami oksidasi sesuai reaksi berikut.
10 NAD+ + 10 H2O->10 NADH + 5 O2
2 FADH2 + O2 -> 2 FAD + 2H2O
Setiap oksidasi NADH menghasilkan kira-kira 3 ATP, dan kira-kira 2 ATP untuk setiap oksidasi FADH2. Jadi, dalam transpor elektron dihasilkan kira-kira 34 ATP. Ditambah dari hasil glikolisis dan siklus Krebs, maka secara keseluruhan reaksi respirasi seluler menghasilkan total 38 ATP dari satu molekul glukosa. Akan tetapi, karena dibutuhkan 2 ATP untuk melakukan transpor aktif, maka hasil bersih dari setiap respirasi seluler adalah 36 ATP.
Sistem Transpor Elektron
Pertama-tama, NADH dan FADH2 mengalami oksidasi, dan elektron berenergi tinggi yang berasal dari reaksi oksidasi ini ditransfer ke koenzim Q. Energi yang dihasilkan ketika NADH dan FADH2 melepaskan elektronnya cukup besar untuk menyatukan ADP dan fosfat anorganik menjadi ATP. Kemudian koenzim Q dioksidasi oleh sitokrom b. Selain melepaskan elektron, koenzim Q juga melepaskan 2 ion H+.
Setelah itu sitokrom b dioksidasi oleh sitokrom c. Energi yang dihasilkan dari proses oksidasi sitokrom b oleh sitokrom c juga menghasilkan cukup energi untuk menyatukan ADP dan fosfat anorganik menjadi ATP. Kemudian sitokrom c mereduksi sitokrom a, dan ini merupakan akhir dari rantai transpor elektron. Sitokrom a ini kemudian akan dioksidasi oleh sebuah atom oksigen, yang merupakan zat yang paling elektro negatif dalam rantai tersebut, dan merupakan akseptor terakhir elektron. Setelah menerima elektron dari sitokrom a, oksigen ini kemudian bergabung dengan ion H+ yang dihasilkan dari oksidasi koenzim Q oleh sitokrom b membentuk air (H2O). Oksidasi yang terakhir ini lagi-lagi menghasilkan energi yang cukup besar untuk dapat menyatukan ADP dan gugus fosfat organik menjadi ATP. Jadi, secara keseluruhan ada tiga tempat pada transpor elektron yang menghasilkan ATP.
Sejak reaksi glikolisis sampai siklus Krebs, telah dihasilkan NADH dan FADH2 sebanyak 10 dan 2 molekul. Dalam transpor elektron ini, kesepuluh molekul NADH dan kedua molekul FADH2 tersebut mengalami oksidasi sesuai reaksi berikut.
10 NAD+ + 10 H2O->10 NADH + 5 O2
2 FADH2 + O2 -> 2 FAD + 2H2O
Setiap oksidasi NADH menghasilkan kira-kira 3 ATP, dan kira-kira 2 ATP untuk setiap oksidasi FADH2. Jadi, dalam transpor elektron dihasilkan kira-kira 34 ATP. Ditambah dari hasil glikolisis dan siklus Krebs, maka secara keseluruhan reaksi respirasi seluler menghasilkan total 38 ATP dari satu molekul glukosa. Akan tetapi, karena dibutuhkan 2 ATP untuk melakukan transpor aktif, maka hasil bersih dari setiap respirasi seluler adalah 36 ATP.
BAB III
KESIMPULAN
Siklus krebs dengan kata lain siklus
asam sitrat atau siklus asam trikarboksilat. Tahapan ini terjadi di matriks
mitokondria. Asetil ko-A direaksikan dengan asam oksaloasetat membentuk asam
sitrat dan membebaskan ko-A. selanjutnya terjadi serangkaian reaksi kimia yang
meregenerasi asam sitrat kembali menjadi asam oksaloasetat. Siklus krebs
bereaksi di dalam matriks mitokondria dan menghasilkan 2 ATP, 6 NADH, dan 2
FADH2.
( 2+2+6=10 molekul NADH x 3 ATP ) =
30 ATP
2 molekul FADH2 x 2 ATP =
4 ATP
|
( 2+2+6=10 molekul NADH x 3 ATP ) = 30
ATP
2 molekul FADH2 x 2 ATP = 4
ATP
Jadi, siklus krebs dan transport
elektron merupakan proses yang berkaitan.
DAFTAR
PUSTAKA
smoga bermamfaat amin
ReplyDelete